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Properties of the Landau
Collision Operator



The Landau Collision Operator

• The Landau (or Fokker-Planck-Landau) collision kernel is given by

L(f)(v, t) =
∂

∂v
·
∫
R3

Q(v − v′)

(
f(v′, t)

∂f(v, t)

∂v
− f(v, t)

∂f(v′, t)

∂v′

)
dv′ ,

with a particle distribution function

f(v, t) : R3 × R≥0 → R≥0

and the inversely scaled projection matrix

Q(v) =
1

|v|3
(
|v|2 1− v ⊗ v

)
.

• It describes binary collisions of (single species) charged particles with
long-range Coulomb interactions.

• Hence, the time evolution (spatially homogeneous Landau equation)

∂f(v, t)

∂t
= L(f)(v, t)

describes the collisional relaxation of a plasma.
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Properties of the Landau Equation

• Mass, momentum and energy are conserved

d

dt

mp
E

 ∼ d

dt

∫
R3

f(v, t)

 1

v

|v|2

 dv =

∫
R3

L(f)(v, t)

 1

v

|v|2

 dv =

0

0

0


• Dissipation of Entropy is non-negative

d

dt
S = − d

dt

∫
R3

f(v, t) ln (f(v, t)) dv = −
∫
R3

L(f)(v, t) ln f dv ≥ 0

• Distribution function satisfying the equilibrium condition
L(f)(v, t) = 0 is a Maxwellian.

• The positivity of f is preserved.
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Analytic Conservation



Analytic Conservation: Weak Form Landau Equation

Multiplying the Landau equation with a time-independent test function
g(v) and integrating over the whole space gives a weak formulation.
Assuming f is compactly supported on a finite domain in velocity space a
partition with elements Ωk and edges eij is introduced

Ω =
⋃
k

Ωk , eij = Ωi ∩ Ωj = ∂Ωi ∩ ∂Ωj , i 6= j .

Integrating by parts then yields∑
k

∫
Ωk

g(v)
∂f(v, t)

∂t
dv =−

∑
k

∫
Ωk

∫
Ω

∂g(v)

∂v
·Q(v − v′) Γ(f)(v,v′, t) dv′ dv

+
∑
k

∫
∂Ωk

∫
Ω

g(v)Q(v − v′) Γ(f)(v,v′, t) dv′ · nk dσ.

with symmetric matrix Q(v − v′) = Q(v′ − v) and antisymmetric vector

Γ(f)(v,v′, t) = −Γ(f)(v′,v, t) = f(v′, t)
∂f(v, t)

∂v
− f(v, t)

∂f(v′, t)

∂v′
.
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Analytic Conservation: Symmetrization of Volume Term

Looking at the volume term, also split the inner integral and divide into a same
element part and a mixed element part

volume part =−
∑
k

∫
Ωk

∫
Ωk

∂g(v)

∂v
·Q(v − v′) Γ(f)(v,v′, t) dv′ dv

−
∑
k

∑
l 6=k

∫
Ωk

∫
Ωl

∂g(v)

∂v
·Q(v − v′) Γ(f)(v,v′, t) dv′ dv

Symmetrize first term by using the symmetry of Q, antisymmetry of Γ and
relabeling of primed and unprimed v since integration domains are the same.

−1

2

∑
k

∫
Ωk

∫
Ωk

(
∂g(v′)

∂v′
− ∂g(v)

∂v

)
·Q(v − v′) Γ(f)(v,v′, t) dv′ dv

Symmetrize second term since for all (k, l) there exits an (l, k) for which using
the symmetry of Q, antisymmetry of Γ, relabeling and switching integrals to
(k, l)

−
∑
k

∑
l>k

∫
Ωk

∫
Ωl

(
∂g(v′)

∂v′
− ∂g(v)

∂v

)
·Q(v − v′) Γ(f)(v,v′, t) dv′ dv
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Analytic Conservation: All Terms

For boundary part change sum to sum over edges, split into inner and
outer edges and use that on eij ni = −nj .
All terms combined read
d

dt

∑
k

∫
Ωk

g(v)f(v, t) dv

= −1

2

∑
k

∫
Ωk

∫
Ωk

(
∂g(v′)

∂v′
− ∂g(v)

∂v

)
·Q(v − v′) Γ(f)(v,v′, t) dv′ dv

−
∑
k

∑
l>k

∫
Ωk

∫
Ωl

(
∂g(v′)

∂v′
− ∂g(v)

∂v

)
·Q(v − v′) Γ(f)(v,v′, t) dv′ dv

+
∑

eij∈Einner

∫
eij

(
g(v)|Ωi − g(v)|Ωj

)∫
Ω

Q(v − v′) Γ(f̂(f |Ωi , f |Ωj ))(v,v′, t) dv′ · ni dσ

Choosing g(v) ∈ {1,v, |v|2} gives conservation of mass-, momentum-
and energy since 1 and v give trivially zero, |v|2 generates an eigenvector
of Q with zero eigenvalue and all three are continuous across elements.
This is also true if f(v, t) is discontinuous.
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Discontinuous Galerkin
Discretization



DG: Properties of the Method

• Combination of finite element and finite volume method

• In contrast to the standard finite element method the approximation
space is chosen to consist of only element-wise continuous functions

• High order accuracy and able to handle complicated geometries,
while good locality of data makes it easy to parallelize

• Mass matrix block diagonal

• Increased amount of degrees of freedom (dof), can not share dof on
element interface
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DG: Weak Form

Choose a tensor product mesh with elements Ωn and basis functions ϕn
m(v) on

each element spanning global DG space Vh.
Choose basis that is able to represent 1,v, |v|2 exactly to maintain
conservation. Approximate solution on element k as

fh(v, t) =
∑
k,i

fk
i (t)ϕk

i (v)

Choose test function from same space and insert both in weak form, find
fh ∈ Vh such that ∀n,m∫

Ωn

ϕn
m(v)

∂fh(v, t)

∂t
dv =−

∫
Ωn

∫
Ω

∂ϕn
m(v)

∂v
·Q(v − v′) Γ[fh](v,v′) dv′ dv

+

∫
∂Ωn

∫
Ω

ϕn
m(v)Q(v − v′) Γ̃[f̃h, f̂h, fh](v,v′) dv′ · nn dσn

with

Γ̃[f̃h, f̂h, fh](v,v′) = fh(v′)
∂f̃h(v)

∂v
− f̂h(v)

∂fh(v′)

∂v′
.

Note: This is only one possible weak form others exist by integrating by parts
differently.
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DG: Volume Part

First look at

Γl[fh](v,v′) =
∑

k,p,i,j

fki (t)fpj (t) Γl[ϕ
k
i , ϕ

p
j ](v,v′)

which has still the symmetry Γl[ϕ
k
i , ϕ

p
j ](v,v′) = −Γl[ϕ

k
i , ϕ

p
j ](v′,v).

The whole volume term can be written as

−
∫

Ωn

∫
Ω

∂ϕn
m(v)

∂v
·Q(v − v′) Γ[fh](v,v′) dv′ dv

=−
∑

k,p,i,j

fki (t) fpj (t)Dnkp
mij

with the constant tensor

Dnkp
mij ≡

∫
Ωn

∫
Ω

∑
q,l

∂ϕn
m(v)

∂vq
Qql(v − v′)

(
ϕk

i (v′)
∂ϕp

j (v)

∂vl
− ϕk

i (v)
∂ϕp

j (v′)

∂v′l

)
dv′ dv
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DG: Numerical Flux

Problem: What is the value of f at the interface of two elements? What
is the value of ∂vf?
For the convective term introduce the numerical flux f̂h. There is no
unique definition, here choose centered flux, i.e.

f̂h(v, t) ≡ {fh(v, t)} =
1

2
(f+
h (v, t) + f−h (v, t)) ,

where f− and f+ are the limits of f approaching the boundary from the
current element and the next element, respectively, i.e. for v ∈ ∂Ωk

f±(v) = lim
ε→∞

(v ± εnk).
For the diffusive part a first derivative of numerical flux is obtained by a
recovery method
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DG: Recovery Method

Idea: Project the solution on Ωn ∪ Ωn+ which is discontinuous at the
interface onto a new space that is continuous in this domain.
Denote recovery solution on Ωn ∪ Ωn+ by
f̃n∪n+
h (v) =

∑
i f̃

n∪n+
i ψn∪n+

i (v)

Global DG solution is fh(v) =
∑

n,m fnm ϕn
m(v)

Recovery basis can be of max degree 2p− 1 for p degree of DG basis.
The L2 projection reads∫

Ωn∪Ωn+

(
f̃n∪n+
h (v)− fh(v)

)
ψn∪n+

j (v) dv = 0 ∀j

⇔
∑
i

f̃n∪n+
i

∫
Ωn∪Ωn+

ψn∪n+
i (v)ψn∪n+

j (v) dv

−
∑
l

fn
l

∫
Ωn

ϕn
l (v)ψn∪n+

j (v) dv −
∑
l

fn+
l

∫
Ωn+

ϕn+
l (v)ψn∪n+

j (v) dv = 0 ∀j
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DG: Recovery Method Continued

The coefficients can thus be written as

f̃n∪n+
j =

∑
l

fnl P
n
jl +

∑
l

fn+
l Pn+

jl

with the constant tensors

M̃ji =

∫
Ωn∪Ωn+

ψn∪n+
i (v)ψn∪n+

j (v) dv ,

Pn
jl =

∑
i

M̃−1
ji

∫
Ωn

ϕn
l (v)ψn∪n+

i (v) dv ,

Pn+
jl =

∑
i

M̃−1
ji

∫
Ωn+

ϕn+
l (v)ψn∪n+

i (v) dv

The derivative at the interface Ωn ∩ Ωn+ is now definable as

∂

∂v
f̃n∪n+
h (v) =

∑
i

f̃n∪n+
i

∂

∂v
ψn∪n+
i (v) .

Note: The recovery coefficients are obtained by a linear combination of
the solution coefficients, the corresponding matrix can be precomputed.
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DG: Boundary Part

Inserting the central numeric flux and the recovered distribution function
in the boundary term yields∫

∂Ωn

∫
Ω

ϕn
m(v)Q(v − v′) Γ̃[f̃h, f̂h, fh](v,v′) dv′ · nn dσn

=
∑

k,p,i,j

(
fki (t)f

p−
j (t)Gnkp−

mij + fki (t)f
p+

j (t)Gnkp+

mij

− fk+

i (t)fpj (t)Bnk+p
mij − f

k−
i (t)fpj (t)Bnk−p

mij

)
with

Gnkp±
mij =

∫
∂Ωn

∫
Ω

∑
q,l

ϕn
m(v)Qql(v − v′)ϕk

i (v′)
∑
s

Pp±
sj

∂

∂vl
ψ

p&p+
s (v)nn

q dv′ dσn

Bnk±p

mij =
1

2

∫
∂Ωn

∫
Ω

∑
q,l

ϕn
m(v)Qql(v − v′)ϕ

k±
i (v)

∂

∂v′l
ϕp

j (v′)nn
q dv′ dσn
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DG: Semi-Discrete Form

Combining the previous results to obtain the final semi-discrete form

∑
k,i

Mnk
mi

∂fki (t)

∂t
=−

∑
k,p,i,j

fki (t) fpj (t)Dnkp
mij

+
∑

k,p,i,j

(
fki (t)f

p−
j (t)Gnkp−

mij + fki (t)f
p+

j (t)Gnkp+

mij

− fk+

i (t)fpj (t)Bnk+p
mij − f

k−
i (t)fpj (t)Bnk−p

mij

)
=
∑

k,p,i,j

fki (t) fpj (t)Ankp
mij , ∀n,m

Note that the tensors are sparse with regards to two of the element
indices n,k,p, since basis functions have only support on their respective
element.
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Conservation of Fully Discrete
System



Conservation for Explicit Time Stepping

The problem can be stated as an initial value problem

∂tf
r
s (t) = Gr

s [f ](t) , fr
s (t0) = (f0)rs

with Gr
s [f ] =

∑
n,m,k,p,i,j

fk
i (t) fp

j (t) (M−1)rnsmAnkp
mij .

A general form for explicit Runge-Kutta methods is

fr
s (tn+1) = fr

s (tn) + ∆t
I∑

i=1

wiki , ki = Gr
s

[
f(tn) +

i−1∑
j=1

αijkj
]

Because of linearity of G recursively simplifies to one case

fr
s (tn+1)− fr

s (tn) = ∆tGr
s [f(tn)]

Multiply with M and contract with dofs for 1,v, |v|2

lhs =
∑

a,b,r,s

1a
b

va
b

eab

Mar
bs

(
fr
s (tn+1)− fr

s (tn)
)

=

m(tn+1)−m(tn)

p(tn+1)− p(tn)

E(tn+1)− E(tn)


=rhs = ∆t

∑
a,b,k,p,i,j

(1a
b ,v

a
b , e

a
b )
>
fk
i (tn) fp

j (tn)Aakp
bij = 0
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Numerical Test Problem



2D Test Problem

Two dimensional relaxation problem
Initial condition given by Bi-Gaussian with σ = 0.25 ,vin = (0.4, 0)>

f(v, t = 0) =
1

σ
√

2π

(
e−|v−vin|2/(2σ2) + e−|v+vin|2/(2σ2)

)
.

16



2D Test Problem

Two dimensional relaxation problem
Initial condition given by Bi-Gaussian with σ = 0.25 ,vin = (0.4, 0)>

f(v, t = 0) =
1

σ
√

2π

(
e−|v−vin|2/(2σ2) + e−|v+vin|2/(2σ2)

)
.

16


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}





2D Test Problem

Two dimensional relaxation problem
Initial condition given by Bi-Gaussian with σ = 0.25 ,vin = (0.4, 0)>

f(v, t = 0) =
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√
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2D Test Problem

Initial condition given by anisotropic distribution with discontinuity, i.e.
Gaussian with cutout, e.g. due to loss cone in a magnetic mirror
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2D Test Problem

Initial condition given by anisotropic distribution with discontinuity, i.e.
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Remarks

• With m the order of the basis, n the number of elements per
dimension and d the number of dimensions the storage complexity of
the system tensor is O

(
(mn)3d

)
⇒ For 2d, 5 elements per dimension, quadratic basis, double
precision: A has 686 MB.

• Further investigations making use of tensor
decompositions/approximations might be interesting.
E.g. for rank r, dimensions d, mode length n:

CP Tucker Hierarchical Tucker Tensor Train

complexity O(ndr) O
(
rd + ndr

)
O
(
ndr + (d− 2)r3 + r2

)
O
(
(d− 2)nr2 + 2nr

)
closedness no yes yes yes

• Method has many degrees of freedom which are worth investigating,
e.g. choice of: flux, projection for recovery, basis functions and
order, time stepping scheme, tensor format, . . .

18



Summary

We . . .

• Introduced the nonlinear Landau collision operator for binary
Coulomb interactions

• Showed that even for a discontinuous space mass, momentum and
energy are conserved if the basis can represent 1,v, |v|2 globally
exactly.

• Discretized the space homogeneous Landau equation using a
discontinuous Galerkin ansatz and a central numerical flux as well as
a recovery method.

• Showed that for an explicit time stepping scheme the conservation
properties are also true for the fully discrete system.

• Gave two numerical test cases that confirmed conservation up to
machine precision and the capability to handle discontinuities in the
solution.
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